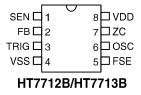


# HT7712B/HT7713B Touch Dimmer

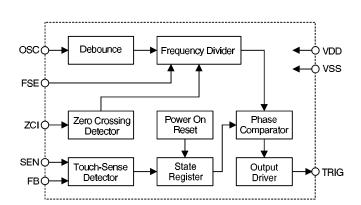
#### **Features**

- High noise immunity CMOS technology
- Operating voltage: 10V
- Line frequency: 60Hz or 50Hz.
- · High sensitivity and stability

- · Polarity insensitive with AC line
- Loading range of sense input from 0 to 1200pf
- · Minimum peripheral components


#### **General Description**

The HT7712B/HT7713B is a CMOS fabricated LSI chip in an 8-lead DIP package. It is designed to control the brightness of lamps by changing the firing angles of the TRIAC through a touch sensitive input. The chip can be used either as a 3-step or a switch function dimmer. The high sensitivity and stability of the HT7712B/HT7713B ensure its high performance. The touch sensitive input can sustain very heavy capacitive loading and propagate

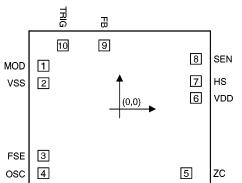

sense through a highly resistive line. The application circuit of the HT7712B/HT7713B is very simple.

Of these two chips, the HT7713B is a 3-step dimmer controller whose trigger angles are set at  $17^{\circ}$ ,  $86^{\circ}$ ,  $121^{\circ}$  — where  $17^{\circ}$  is the brightest,  $86^{\circ}$  the medium brightness, and  $121^{\circ}$  the darkest. The HT7712B, on the other hand, is an ON/OFF switch whose ON state is set at an angle of  $17^{\circ}$ .

#### **Pin Assignment**



### **Block Diagram**




1 26th Mar '97

Unit:mil



# **Pad Coordinates**



| Pad No. | X      | Y      | Pad No. | X      | Y     |
|---------|--------|--------|---------|--------|-------|
| 1       | -35.33 | 20.07  | 6       | 35.24  | 5.13  |
| 2       | -35.33 | 11.97  | 7       | 35.24  | 12.96 |
| 3       | -35.33 | -21.60 | 8       | 35.24  | 23.22 |
| 4       | -35.33 | -29.70 | 9       | -7.16  | 29.43 |
| 5       | 30.83  | -29.70 | 10      | -26.33 | 29.43 |

Chip size:  $85 \times 73 \text{ (mil)}^2$ 

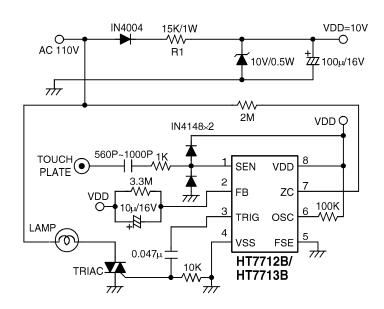
## **Pin Description**

| Pin No. | Pin Name | Description                                            |  |
|---------|----------|--------------------------------------------------------|--|
| 1       | SEN      | Touch sense input                                      |  |
| 2       | FB       | Feedback signal to control the sink current of SEN pin |  |
| 3       | TRIG     | Trigger output to drive the TRIAC                      |  |
| 4       | VSS      | Negative power terminal                                |  |
| 5       | FSE      | Line frequency selection (floating: 60Hz ; Vss: 50Hz)  |  |
| 6       | OSC      | Oscillator input                                       |  |
| 7       | ZC       | Line frequency 60Hz or 50Hz input for zero crossing    |  |
| 8       | VDD      | Positive power terminal                                |  |

# **Absolute Maximum Rating**

| Supply Voltage           | 0.3V to 13V   | Storage Temp   | –50°C to 125°C |
|--------------------------|---------------|----------------|----------------|
| Input VoltageVSS-0.3V to | $V_{DD}+0.3V$ | Operating Temp | 0° to 70°C     |

 $<sup>\</sup>ensuremath{^{*}}$  The IC substrate should be connected to VDD in the PCB layout artwork.




### **Electrical Characteristics**

 $(Ta=25^{\circ}C)$ 

| Symbol            | Parameter           | Test Condition |                     | Min.  | Max. | T 1 4 |
|-------------------|---------------------|----------------|---------------------|-------|------|-------|
|                   | Parameter           | $V_{DD}$       | Condition           | MIII. | Max. | Unit  |
| $V_{\mathrm{DD}}$ | Dc Supply Voltage   | _              | _                   | 9     | 11   | V     |
| I <sub>OL</sub>   | Trig Sink Current   | 10V            | V <sub>OL</sub> =2V | 30    | _    | mA    |
| I <sub>OH</sub>   | Trig Drive Current  | 10V            | $V_{OH}=5V$         | -1    | _    | mA    |
| I <sub>LEAK</sub> | I/P Leakage Current | 10V            | _                   | _     | 0.5  | μΑ    |

### **Typical Application Circuit**



Note: 1. In 220V AC line power, the R1=33K/1W
2. In 60Hz line frequency, the pin FSE=Floating
In 50Hz line frequency, the pin FSE=VSS